If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+140X-1200=0
a = 1; b = 140; c = -1200;
Δ = b2-4ac
Δ = 1402-4·1·(-1200)
Δ = 24400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{24400}=\sqrt{400*61}=\sqrt{400}*\sqrt{61}=20\sqrt{61}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(140)-20\sqrt{61}}{2*1}=\frac{-140-20\sqrt{61}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(140)+20\sqrt{61}}{2*1}=\frac{-140+20\sqrt{61}}{2} $
| d/2=5=9 | | 4x+6×=9x | | 4(3+2x)-7=7÷2x+14 | | 7x=(10/11)+(2/7) | | 3x+-37=2x+12 | | -9x-7=-88 | | -9x+7=-88 | | -1/5x=2.22 | | 13n-9=5n+27 | | 3/5k=-15 | | 186.9=-4.2a | | 0.14x+5=12 | | 6x+17=86 | | 8x²+25x+13=0 | | 123456789j=1 | | 123123123123123123123123123123123c=1111111 | | 2x=1.29212912 | | 4x4x=254 | | 3x16=7x | | 1/2x+3/2x+3/2-1/4=5 | | (2x+12)(2x+18)=432 | | 20x+11=5/4 | | 4x=15+7 | | 4x=24-15 | | 4x=24-7 | | 60-2x=10 | | -18+90=-20(1+12x) | | -v/9=-36 | | 3x+3/8x=5 | | 15b+21-5b=10b+21 | | -6n+(-12)+4n=0 | | -2(2h+10)+4h=0 |